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The second condition in (4.3) is satisfied automatically. In the general case A,, Bk Y 
N 0 (ewnkz) if f1 (r) = js (r) = 0, which corresponds to compression of an infinite cylin- 

der by two semi-infinite collars A,, B, - 0 (k~-2%~"). 
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We construct two-dimensional equations describing the bending bifurcation of equilibri- 
um of plates made of a neo-Hookean material, for the case of homogeneous initial defor- 

mation. We derive bee-dimensional equations of neutral equi~brium for this material. 
A variational principle which is equivalent to the differential equations of neutral equi- 

librium and analogous to the the Refssner’s principle in the classical theory of elasticity, 
is established. We use this variational principle to derive two-dimensional equations of 
buckling of plates by approxima~g the variations fn the values of the knot functions 

in the normal direction. The cases of buckling of a uniformly compressed circular plate 
and of a rectangular plate under a combined load are used as examples. An exact solu- 

tion of three-dimensional equations of neutral equilibrium is obtained for a circular 

cylinder compressed over its lateral surface, with axial symmetry present. and compared 
with the corresponding tw~dimensional result. 

1. Equation8 of nsutrrl equlllbrlum for or neo-Hookarn mate- 
r ir 1. Specific potential energy of deformation is given for a neo-Hookean material 

by the following expression : 
w = Cl (I, - 31, Cl = const 
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The material is incompressible, i.e. when it is deformed, the condition 

I, (GX) = 1 (1.1) 

where 1, and 13 are the first and third invariant of the tensor GX , must be fulfilled. 
Here GX is the Cauchy’s measure of deformation fl and 21. Finger’s form II] of the 
equation of state of an isotropic elastic body yields the following expression for the stress 
tensor for a neo-Hookean material: 

T = 2c, vRT . VR + 2c_,E (1.2) 
Here R is the radius vector of a point of the deformed body, V is the nabla operator 

in the metric of the undeformed state and E is a unit tensor. The quantity c-1 in (1.2) 

is an undefined function of the strain invariants and in the case of a specific problem it 

should be obtained from the equations of equilibrium and the condition of incompressi- 

bility. Further from the formula @] 
I) = d& (vRT)-l.T 

where D is the Piola stress tensor, we obtain the following expression for a neo-Hookean 
material D = 2c,vR + 2c_, (vRT)-l (1.3) 

The neutral equilibrium equations for an elastic body with external dead loading can 
be written in the metric of the undeformed state as follows [2]: 

V -D’ = 0 in the volume V; n - D’ = 0 on or, W = 0 on 02 (1.4) 

D’= {-+-D (R” + w)}x=o 

Here II0 is the radius vector of a body point corresponding to the initial state of equi- 
librium which is under investigation for stability, o, denotes the part of the surface of 

the undeformed body at which the external forces are applied and oa denotes the part of 

the surface on which the displacements are given. For a neo-Hookean material (1.3) 

yields 
%CI -‘D’ = VW + p (vR’~)-~ + m (VRoT)-l. VwT - (vRoT)-l (1.5) 

P = (c-d’/ Clr m = - c_,’ / cl 

We note that both. p and the vector of additional displacement W, are unknown func- 
tions of the coordinates. The quantity p can be found from the equations of equilibrium 

(1.4) and the condition of incompressibility 

I;= 0, or (vR”)-‘- -VW = 0 (1.6) 

In the case of afffne initial deformation we introduce, for convenience, the rotated 

displacement vector W’ = w . A“T and the tensor D” = D’+ AaT, where A” = 
= GXO-“2 , VR ’ is the rotation tensor of the principal axes of the initial deformation. 
Then in place of (1.5) and (1.6) we obtain 

r,&rD., = vw’ + pG”“-“’ + mGXO-‘/‘. vw~*. Gxo-“. (1.7) 

v . G”“-‘.“. w’ = 0 (1.8) 

Since the tensor A” is constant when the initial deformation is affine. Eqs. (1.4) are 

obviously equivalent to 

V.u’=O inv, n-D”=0 on or, W’=O on02 
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Inserting (1. ‘7) we obtain the following differential equations of neutral equilibrium 

in terms of displacements for a neo-Hookean material in the case of affine initial defor- 
mation vsw’+ G”“-“‘. vp = 0 (1.9) 

In deriving this we have used the fact that the condition of incompressibility (1.8) 

implies v . G”“-“2. vW~T . GXO-“1 = v . Gx’+‘z (v . G”“-‘1”. w’) = 0 

Only the affine initial deformation is considered ln what follows. In order to simplify 

the notation we shall omit the prime as well as dispense with the vector w’and the ten- 

sor D”‘. We shall also denote the vector w”AoT and the tensor D* . A’T by w and D" , 
respectively. Finally, we shall omit the index a where it refers to the initial state of 

stress-strain. 

2. Variational formulation of the problem on bifurcation of 
equilibrium for a neo-Hook@rn material ln the oa~e of afflne 
initial deformation. Let us consider the following functional over the vector w 
and tensor D’, both of which we regard as independent functions of the coordinates: 

D’ = dsk*esek, w = ukek, a; = $ 
s 

Here the integration is performed over the volume of the body ln its undeformed state, 
G, denotes the principal values of the tensor G” in the initial state of stress, &k denote 
the components of the tensor D’ with respect to the basis of the principal directions e, 

of the tensor G” in the initial stressed state, uk are the components of the vector w 
with respect to the basis ek , and x8 are Cartesian coordinates of the undeformed body, 

their axes coinciding with the unit vectors e,. The summation in (2.1) is understood to 
be performed over the indices s, k = 1, 2, 3. 

We shall show that the functions w twice continuously differentiable with respect to 
coordinates and satisfying the condition w = 0 on o, and all continuously differentiable 

tensors D’ impart a stationary value to the functional @ if and only if they satisfy 

v.D’= 0, v.G’+“.~ = 0, & D’ = vw + mG*-‘I’ .vwT . G”-I”+ pG”-“I 

(2.2) 
where p is a continuously differentiable function of the coordinates. and the following 
boundary conditions on o, : n.D’=O 

Let us compute the variation of the functional @ 

8@ - ~\~{&&& + ‘/Za&@,; + 1/2akU,bak; - 

; 

(?G.$r asi6ask’ + %Gk dk,‘6aks’ - 
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Since by definitions the variations 6~~ are arbitrary, we arrive after integrating by 

parts, at 
asask’ = 0 in u*, nsask’ = 0 on 01 (k = 1. 2, 3) (2.3) 

Further, equating to zero the coefficients accompanying the variations 6a,k and &8k, , 
we obtain 

(2.4) 

(s + k, not to be summed over s, kl) 

(not to be summed over SI) 

Solving (2.4) for ask’ we obtain 

& a8k* = %uk + 
v 

&- 8th (8 + k, not to be summed over S, k) (2.6) 
LT k 

Rewriting (2.5) we obtain the following expressions for the diagonal components of 

the tensor D’ : 

C,+m ass’- Go+m 

(not to be summed over (I = I, s, 3) 

Adding the three equations of(2.7) we find that the sum of the left parts is identically 

zero, and this yields the condition of incompressibility 

+__O 
s=t G, 

(2.8) 

When the above condition holds, a solution of (2.7) exists but is not unique and has 

the form i GI+ m 
+L*= G 1 a,u, + p 

PC 
(not to be summed over st) (2.9) 

(I 

wherep is an undefined function of the coordinates. Combining (2.6) and (2.9) we obtain 

& ask' = as% + + akUs + 

If 
(not to be summed over (2.10) 

s k *, k = I, 2, 3!) 

Since Eqs. (2.3), (2. 8) and (2.10) agree with (2. S), our assertion is proved. 

3. Derlvrtion of two-dimenrionrl equrtiona of plate buckltng. 

Assuming that the initial deformation in the plate represents a plane affine transforma- 
tion accompanied by uniform elongation in the z -direction we use Eqs. (1.8) and (1.9) 
of neutral equilibrium to conclude that there are two mutually independent types of 
forms of bifurcation: symmetric with respect to the neutral plane z = 0 and antisym- 
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metric, i.e. flexural, For the flexural forms of buckling we shall use, as in p], the follow- 

ing approximate expressions for the displacement vector w and the tensor D’ in terms of 

the z-coordinate 

w = wlz + w&, w1 = ulel + u2ez 

a ak l ==~M,kz (s,k=i,2), as; = 0 (3.1) 

Introducing two-dimensional vectors 

VIseI + V,sea = VI, Vta’or + Vss’02 = Vs, VsIel + Vs2e2 = Vs 

we obtain 
hlr 

M = Mskesek = s f3sk*esekz dz 
-hlz 

h/z 

s 

hi2 (s, k = 1, 2) 

V 2= Cc dz, VI + Vs = I &,*e, dz 
--his -h/z 

Here h denotes the thickness of the plate in its undeformed state. Using the variation- 

al principle formulated in Sect. 2, we obtain the functions wo,wl, M,V,,Vsand V, of two 
variables (2, y) from the condition of stationarity of the functionai (‘2.1). Let us substi- 
tute (3.1) into (3. l), integrate the result with respect to z and calculate the variation 

8@=\\{-(v.M)~dw,- hY% (VI, + VI,‘) - hd2 (V234 V2s’) + SHIV,, f 
I’ . . 
S 

+ 6Vla [i%% - vGIGs 4clh (GIGS - ma) (E f/G,GsV,, + 2 fGx3V13’ - $ d,,)] + 5 

+ 6v2s [a2wo - - - 
E lfGzG3 V2, + 2 -f/G,% V,,’ - $ mv,,)] + 5 

+ “d [ alwo - 4elh zz: m2) l2 dGlG3 VI, + 2 ‘)/(=1G, h3’ - 2d&)] + 

i- 6v23’ [ 82% - kc& $2Gz: m21 (2 f/G& v23’ + 2 vm lL2i - 2mY,2)] -j- 

GBGs V,, - $ mV,, - 2r~&‘~~~j]j do + 
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+Q;[n.M.8w,+n.(V1+Vs)~zu,]ds=0 
Y 

Here S is the neutral plane of the plate, y is its boundary, n is the normal to this 
boundary and V is the two-dimensional nabla operator. 

Arbitrariness of the variations 6Msk and SMk, implies that 

.- Clh3 
l/G,G,M,I,-mMk, =T 

GsGk-m2 

1/ 
GG d,uk 

s k 

3 GsGk-m2 
- d!!f,k + 1/G,&Mk, = -$& 

v 
GG &us 

s k 

(3.2) 

(s#rZ not to he summed over s, 2 1, 2!) 

(not to be summed over S, k = 1, Z!) 

From (3.2) we find 

.lf,k = $ a&l, + 
( 

P?.__ 
vGsGk 

dku, 
! 

(s # ‘4 (3.4) 

The system (3.3) for the diagonal components of the tensor R/I admits a unique solution 

when the right hand sides are arbitrary, namely 

(not to be summed over s = 1, Z!) 

It follows therefore that in contrast to the general case of Sect. 2, the kinematic quan- 
tities introduced here must be regarded as independent. Combining (3.4) and (3.5) we 

obtain 

M,k = $ [a,u, + & (3.6) 

s k 

(not to be summer over S, k = 1, 2) 

Let us consider such an initial deformation, which leaves the plate faces z = f h / 2 
load-free. Then from (1.3) we obtain 

m = - c_~ I cl = G, 

Moreover, the initial deformation satisfies the condition of incompressibility 

G,G,G, = 1 

Taking this into account we can write (3.6) in the invariant form as 

hl .G ""'=+[vG".w,$- G,~w,~+ 2G3v.w,E,] 

E2 = wl + e2ebr wq = Gx-"'. wl 

C3.7) 

Further, equating to zero the coefficients accompanying the variations of the vectors 
V,, V, and Vs and solving the resulting equations, we obtain 

vz .@' = 6/3~lh [G" -w2 + Jf~&wo] (3.8) 

VI + V3 z l/aclh [5,f/G,w, + (6F:, - '&G? .Ow,l (3.9) 

The arbitrariness of the variations of the kinematic quantities implies the following 
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equations of equilibrium 

v .M .G"'/' = VZ.Gx"r, v+s+W=O (3.10) 

Inserting the relations (3.7) - (3.9) into (3.10) we arrive at the following equations 

in terms of displacements, describing the bifurcation of equilibrium of the plate 

l/r@ ( v2Gx .~~+3G~v~~w,)-G~~w,-~~vw,=O (3.11) 

51/Gv.w,+ v.(~E,--G~G~-~).vw,, = 0 

A variety of boundary conditions follow clearly from the structure of the contour inte- 

gral in the expression for 6@. We find that it is possible to obtain a separate fourth 

order differential equation for the flexure of the neutral surface 1~‘~. from the system 

(3.11). 
let us multiply the first equation of (3.11) by lG,GYml and find the divergence of 

the left-hand side 
1/n,h2 1/G (v*v . wz + 3Gsv.GY-1.~~.w,)- 

-l/@*w, -Gav.Gx-'qw,, = 0 

Inserting here V - w, from the second equation of (3.11) we obtain the required equa- 

tion for W. 
‘jIoh2 (v2 + 3G3v. G'-'. V)V.(6E2- GsG*-l)* VW,- 

- 6v.(E,- GsGX-l).~wo = 0 (3.12) 

In addition we can easily see that the general solution for w2 can be written in the 

following form : 5 l/F3~2 = V x $ig + up - (6E2 - GSG'-') * VW, 

The scalar function p can be obtained from 

VIoh2V2$ - 9 = 0 

Any particular solution of the equations 

r/r,,hsV2~- up =l/loh2 (V2E2 + 3G3Gx-1.VV).(6E2-GG3GX-1) *VW, (3.13) 

- 6(E2- G,GX-').vw,, v.cp-0 (3.14) 

can be used as the vector ‘p . 

We note that the vector appearing in the right-hand side of(3.13) is solenoidal by 

virtue of Eq. (3.12). For example, when the plate is uniformly compressed 

G” = G,E, + G&i3 

the solution of (3.13) and (3.14) is 

q = - llIoh2(1 _F 3G1")(6 - G1")vv2w, + S(1 - G~-3)v~,, 

Assuming now that the initial deformation in the plate is very small, we linearize the 

differential equation (3.12) with respect to this deformation. When the deformations 
are small, we have G”” = E - se 

Here E is the linear deformation tensor. By virtue of the condition of incompressibi- 
lity the linear approximation 

G, = 1 - 2E,.*e 
This inserted into (3.12) yields 

vow,, _ l/,h-2 (12 + l'l,h2V2)V.(e + E,. m&E,) V-w, = 0 

When the deformations are small, the neo-Hookean material obeys Hook’s law with 
the shear modulus p = 2c, and Poisson’s ratio v = 0.5 
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e = lh-l [T- l/J1 (T) E] 

when the faces of the plate are stress-free 

e = Q-l (T - VsT. . E,E) 

If in addition the plate is very thin, the quantity ll/BhaVa will be small compared 

with 12 and can be neglected. The equation for the bending ru,,will then assume the form 

1/shapv4w,- v.T.vw,=O 
When v = 0.5 the cylindrical rigidity of the plate is 

D Eh* 
12(i-vs) = 12(1-VP) 

Thus for small initial deformation the basic differential equation of buckling (3.12) 
transforms into the equation of the classical theory of stability of plates [4]. 

4. Axially Bymmetric buckling of a unffwmly comprasred cfr- 
culrr plrte. (Exrmplr 1). Let r, 8 denote the polar coordinates in the plane 
of the undeformed plate and ei, ee the corresponding basis vectors. With the axial sym- 
metry present, the solution of (3.11) is 

w. = CJO (ar) + D, u = ws.eg = 0, 

a’ = - 
60 (1 - G1+‘) 

u = ws.e, = ys Gl(6 - G1+) CaJ1 (ar) hs (1+ 3G1-3 (6 - CL-‘) 

Here Jo and J1 are Bessel functions, and C and D are constants of integration. If the 

plate is clamped along the contour, then the condition u = 0 when r = a leads to the 

equation 60 (GP - GP) ha 
6G16 + 17G1” - 3 = rn” 7 (4.1) 

where ynare the zeros of ~1 (n = 1, 2, . . . ). It can easily be confirmed that when (4.1) 

holds, so does e,.(Vl+Vs)=O when r.=a, 

i.e. this solution holds when the clamped edge is free to slide. 
To compare the results we shall consider the exact solution of the axially symmetric 

bifurcation of equilibrium of a circular cylinder made of neo-Hoohean material, uni- 

formly compressed over its side surface. The faces of the cylinder are free and the side 
surface, although fixed with respect to rotation, may slide in the direction of the z -axis 
(axis of the cylinder). When the cylinder is thin, the above boundary conditions become 
applicable to a clamped plate. We require therefore solutions of (1.8) and (1.9) satisfy- 

ing the conditions 

is-D’=0 @=&l/ah), e; ZY.Lj = 0, ~=w.e,=O (~=a) (4.2) 

Here D’ is given by (1.7). In the present case of uniform compression we have 

GX = GIEI + G&is = B~EB + B-%la 

From (1.8) and (1.9) follows 
v.GX-‘.Vp = 0 (4.3) 

where V is the three-dimensional Hamiltonian. 
For axisymmetric forms of bifurcation we have v = U) . ee = 0 and Eqs. (1.8) and 

(1.9) become 
(4.4) 
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Equation (4.3) can be written as 

PP 
-37+ 

+g+p$&o 

Using (1.7) and taking into account 

rn=Cs=p+ 

(4.5) 

we find (4.2) replaced by 

u=o (r-1 (4.6) 

$++G=O, 2$+#=0 (z=f+h) (4.7) 

We shall seek only those bending forms of bifurcatiar, for which IL and P are odd func- 
tions of a, and w is an even function of z. Then 

p = BJo (kr) sh kp-9 (B, k=const) 

is a solution of (4.5). 

From the first two equations of (4.4) we now obtain 

w = (i$)k Bchkh+z+Achkz 
C I 

Jo(kr)+D 

u = 
C 

(i _p;;,,) k B sh &3-“z + A’ sh kz 1 Jl (kr) 

and from the third equation of (4.4) we have 

A’ = +-‘A 

The boundary conditions (4.6) will hold on the side surface ff the constant k is chosen 
such that J,(ka) = 0. Thus let us set 

k=k,,=r,/a (n-1. !a, 3. .*.) 

Consequently we have the following solution for every n : 

P’ 
u* = (i- B”) k,, 

B,, sh k,,$-zz - A$” sh k,, z 
I 

JI (kg) 

C 
p5 -- 

W 
= n (1 - (3”) k, 

B, ch k,p-az + A,, ch k,, s 1 Jo (k,, r) + D 

p, = B,, sh k&3-5 Jo (k,,r) 

Further, assuming that conditions (4.7) hold on the ,cyUnder endfaces, we construct a 
system of homogeneous lfnear equations in the constants A,and B;and equate its deter- 
minant to zero, thus arriving at the following transcendental equations for the critical 

values of 6 
0+ P6Y th i 

8” i 
&+)=4th(&&~ (4.8) 

Wheny,,h/a= i , the root of (4.8) is 8* = 0.944. Since yr = 3.83, the above value 
corresponds to the first form of plate buckling where the ratio 2~ / h = 7.66. Equation 

(4.1) of the approximate two-dimensional theory yields for y,h / u = 1, & = 0.945. 

The classical theory of buckling of plates in this case gives 

(& = 0.944 when y,,h / a = i) 

Thus, if the uniformly compressed plate is sufficiently thin, both, the two-dimensional 
theory nonlinear with respect to the initial deformation and the classical theory of 
bucklfng, give correct results for the critical deformation corresponding to the first form 
of buckling. 
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We note that according to the exact solution of (4.8) the critical value of the initial 
compression corresponding to an infinite number of nodal contours (y, --, m) is given by 

(1 + 66)” = 483 

from which we obtain 6, = 0.664. This also implies that a plate, no matter how thick, 
will buckle when fi = 6,. 

6. Rectangular plate under a combined initial lord (Example 2). 
Let the initial deformation of the plate be such, that its principal axes e, are parallel to 

the sides of the plate 
Gx = hl%il + X&i* + Lr-*I,*-*isi* 

Then the system of differential equations (3.11) can be written as 

; jhP + kjkr2 
) 

&I 

g + g Al2 g + g & - - 

1 awo 

axay 
?&l - -- - 0 

hlh2 ax - 

-g&($+$)+(6- &$5+(6-&)$=0 (5.1) 

Here 2 and y are Cartesian coordinates in the neutral plane of the undeformed plate, 
0 < x < a and 6 < y < b, while u and 0 denote the x- and y-components of the vec- 

tor UJ* . We assume that the plate is hinged along all its edges, i.e. that it has the fol- 

lowing boundary conditions 

IQ= 0, Mll=O, v =0 when x= 0, x = a 

wo = 0, M22 = 0. u=O when y=O, y=b 

Using (3.7) we can easily confirm that the corresponding functions are 

mTI n3t 
~(=Ucos~xsin-y, 

b v =Vsin%nx Eosyy 

rnz nl 
w0 = W sin 0 x sin -jj- y 

Here U, V, W are independent of x and y, and m, n = 1, 2, 3, . . . Inserting these 
expressions into (5.1) we arrive at a system of homogeneous linear equations in U, V 
and W. Calculating its determinant for a square ( a = b) plate we obtain 

[ha2 (m2 + n2) + iI{- 6 ($ -I- $) + 6k%* (m2 + n2) [hea (m2 + n*) f 11 $ 

+ i7h,2 (m2 + n2) [$$ + $zj - 3 & (g -I- $rj”) = 0 (5.2) 

512 h2 
h*2 = 10 02 

If we further set 
mz n2\ _ 

h12+xFj 
hl 2h2-2 = t 

then we can reduce (5.2) to a quadratic equation which, in turn, yields 

t=~~-[6-17h~*(mz+nz)~* 

f v [ 6 - 17h,* (ma + na)]* + 72h,* (m* + n*) [i + hea (m* + PI*)*] 

(5.3) 

(5.4) 
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Since t cannot be negative, we must disregard the root with the minus sign before the 

radical. The other root is always positive, therefore a critical value of t exists for any 
thickness of the plate. Having found this value for given m and n , we can use (5.3) to 
obtain the critical relation between the parameters h and hp. 

The pressures Pr, pz acting on the boundaries z = 0, z = a and 6, = 0, I/ = 6 in the 
initial deformed state and calculated per unit area of the undeformed body are expressed, 

according to (1.3). by 

The critical relation between h, and ;19 defines a curve in the plane of load parameters 

pi* and PI*, for every set of integers m and n. 
The line composed of segments of these curves 

nearest to the coordinate origin pl* = 0, pa* = 0, 

separates the regions of stability and instability, 

and is therefore called the boundary line. 

Such a line computed according to the formu- 
las (5.3) and (5.4) is shown in Fig. 1. The bro- 
ken line corresponds to the classical theory of 
buckling of plates. In our calculations we have 

used the value of he2 = 0.01 which corresponds 
approximately to the plate thickness of h/a = 
=O.l. It follows therefore that when the plate 
is compressed in both directions, then for the 
lower critical loads the conventional theory of 

Fig. 1 buckling yields nearly correct results ; if, on the 

other hand, the plate is stretched in one direc- 

tion and compressed in the other, the conventional theory gives excessive results. 

Authors of [5, 63 have deduced that, when a rectangular plate made of neo-Hookean 
material or of Mooney material is uniformly compressed, then a limiting thickness exists 

above which the plate remains stable under any amount of compression. However all 

known exact solutions of the problems on bifurcation of equilibrium of solid elastic bodies 
point to the opposite: if the initial deformation reaches a certain finite value, the plate 

will lose its stability irrespective of its thickness. 
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